Search results for "Generalized linear models"

showing 10 items of 14 documents

Model uncertainty and variable selection: an application to the modelization of FDI determinants in Europe

2019

Las últimas décadas han visto un interés cada vez mayor en la IED, y un debate creciente sobre su modelización en términos de las variables consideradas como sus determinantes, la especificación del modelo y los métodos de estimación del modelo de gravedad de la IED. Esto se debe a la incertidumbre que rodea tanto las teorías como los enfoques empíricos de la IED. Esta Tesis doctoral tiene como objetivo contribuir a la literatura mediante la investigación de las fuerzas impulsoras de las actividades de las EMNs hacia y desde los países europeos, tanto a nivel regional como nacional, abordando los problemas de selección de variables e incertidumbre del modelo que se enfrentan al modelizar la…

gravity model:CIENCIAS ECONÓMICAS::Econometría::Modelos econométricos [UNESCO]UNESCO::CIENCIAS ECONÓMICAS::Economía internacionalgeneralized linear modelsgermanyUNESCO::CIENCIAS ECONÓMICAS::Econometría::Modelos econométricosbayesian model averagingspanish regions:CIENCIAS ECONÓMICAS::Economía internacional::Inversión exterior [UNESCO]:CIENCIAS ECONÓMICAS::Economía internacional [UNESCO]UNESCO::CIENCIAS ECONÓMICAS::Economía internacional::Inversión exteriorforeign direct investment determinantsvariable selection
researchProduct

Modeling Posidonia oceanica growth data: from linear to generalized linear mixed models

2010

The statistical analysis of annual growth of Posidonia oceanica is traditionally carried out through Gaussian linear models applied to untransformed, or log-transformed, data. In this paper, we claim that there are good reasons for re-considering this established practice, since real data on annual growth often violate the assumptions of Gaussian linear models, and show that the class of Generalized Linear Models (GLMs) represents a useful alternative for handling such violations. By analyzing Sicily PosiData-1, a real dataset on P. oceanica growth data gathered in the period 2000–2002 along the coasts of Sicily, we find that in the majority of cases Normality is rejected and the effect of …

Statistics and ProbabilityGeneralized linear modelSettore BIO/07 - EcologiabiologyEcological Modelingmedia_common.quotation_subjectGaussianLinear modelPosidonia oceanica annual growth Generalized Linear Models Generalized Linear Mixed Models lepidochronological data.biology.organism_classificationGeneralized linear mixed modelHierarchical generalized linear modelsymbols.namesakePosidonia oceanicaStatisticsEconometricsGamma distributionsymbolsSettore SECS-S/01 - StatisticaNormalityMathematicsmedia_common
researchProduct

Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models

2013

Summary Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasonable to assume that the underlying process generating the data is itself sparse, in the sense that only a few of the measured variables are involved in the process. We propose an explicit method of monotonically decreasing sparsity for outcomes that can be modelled by an exponential family. In our approach we generalize the equiangular condition in a generalized linear model. Although the …

Statistics and ProbabilityGeneralized linear modelSparse modelMathematical optimizationGeneralized linear modelsVariable selectionPath following algorithmEquiangular polygonGeneralized linear modelLASSODANTZIG SELECTORsymbols.namesakeExponential familyLasso (statistics)Sparse modelsDifferential geometryInformation geometryCOORDINATE DESCENTFisher informationERRORMathematicsLeast-angle regressionLeast angle regressionGeneralized degrees of freedomsymbolsSHRINKAGEStatistics Probability and UncertaintySimple linear regressionInformation geometrySettore SECS-S/01 - StatisticaAlgorithmCovariance penalty theory
researchProduct

Estimation of sparse generalized linear models: the dglars package

2013

dglars is a public available R package that implements the method proposed in Augugliaro, Mineo and Wit (2013) developed to study the sparse structure of a generalized linear model. This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method (LARS). The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve; specifically a predictor-corrector algorithm and a cyclic coordinate descent algorithm.

generalized linear models dgLARS predictor-corrector algorithm cyclic coordinate descent algorithm sparse models variable selectionSettore SECS-S/01 - Statistica
researchProduct

Extended differential geometric LARS for high-dimensional GLMs with general dispersion parameter

2018

A large class of modeling and prediction problems involves outcomes that belong to an exponential family distribution. Generalized linear models (GLMs) are a standard way of dealing with such situations. Even in high-dimensional feature spaces GLMs can be extended to deal with such situations. Penalized inference approaches, such as the $$\ell _1$$ or SCAD, or extensions of least angle regression, such as dgLARS, have been proposed to deal with GLMs with high-dimensional feature spaces. Although the theory underlying these methods is in principle generic, the implementation has remained restricted to dispersion-free models, such as the Poisson and logistic regression models. The aim of this…

Statistics and ProbabilityGeneralized linear modelMathematical optimizationGeneralized linear modelsPredictor-€“corrector algorithmGeneralized linear model02 engineering and technologyPoisson distributionDANTZIG SELECTOR01 natural sciencesCross-validationHigh-dimensional inferenceTheoretical Computer Science010104 statistics & probabilitysymbols.namesakeExponential familyLEAST ANGLE REGRESSION0202 electrical engineering electronic engineering information engineeringApplied mathematicsStatistics::Methodology0101 mathematicsCROSS-VALIDATIONMathematicsLeast-angle regressionLinear model020206 networking & telecommunicationsProbability and statisticsVARIABLE SELECTIONEfficient estimatorPredictor-corrector algorithmComputational Theory and MathematicsDispersion paremeterLINEAR-MODELSsymbolsSHRINKAGEStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaStatistics and Computing
researchProduct

Dual Extrapolation for Sparse Generalized Linear Models

2020

International audience; Generalized Linear Models (GLM) form a wide class of regression and classification models, where prediction is a function of a linear combination of the input variables. For statistical inference in high dimension, sparsity inducing regularizations have proven to be useful while offering statistical guarantees. However, solving the resulting optimization problems can be challenging: even for popular iterative algorithms such as coordinate descent, one needs to loop over a large number of variables. To mitigate this, techniques known as screening rules and working sets diminish the size of the optimization problem at hand, either by progressively removing variables, o…

FOS: Computer and information sciencesComputer Science - Machine Learningextrapolation[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Machine Learning (stat.ML)working setsgeneralized linear models[STAT.ML] Statistics [stat]/Machine Learning [stat.ML]Convex optimizationscreening rulesMachine Learning (cs.LG)[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]Statistics - Machine Learning[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Lassosparse logistic regression
researchProduct

Model averaging estimation of generalized linear models with imputed covariates

2015

a b s t r a c t We address the problem of estimating generalized linear models when some covariate values are missing but imputations are available to fill-in the missing values. This situation generates a bias-precision trade- off in the estimation of the model parameters. Extending the generalized missing-indicator method proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a problem of model uncertainty using Bayesian averaging of classical maximum likelihood estimators (BAML). We also propose a block model averaging strategy that incorporates information on the missing-data patterns and is computationally simple. An empirical application illustrates our…

Generalized linear modelEconomics and EconometricsApplied MathematicsSettore SECS-P/05 - EconometriaEstimatorMissing dataGeneralized linear mixed modelModel averaging Bayesian averaging of maximum likelihood destimators Generalized linear models Missing covariates Generalized missing-indicator method shareHierarchical generalized linear modelStatisticsLinear regressionCovariateApplied mathematicsGeneralized estimating equationMathematics
researchProduct

dglars: An R Package to Estimate Sparse Generalized Linear Models

2014

dglars is a publicly available R package that implements the method proposed in Augugliaro, Mineo, and Wit (2013), developed to study the sparse structure of a generalized linear model. This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method proposed in Efron, Hastie, Johnstone, and Tibshirani (2004). The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve: a predictor-corrector algorithm, proposed in Augugliaro et al. (2013), and a cyclic coordinate descent algorithm, proposed in Augugliaro, Mineo, and Wit (2012). The latter algorithm, as shown here, is significan…

Statistics and ProbabilityGeneralized linear modelEXPRESSIONMathematical optimizationTISSUESFortrancyclic coordinate descent algorithmdgLARSFeature selectionDANTZIG SELECTORpredictor-corrector algorithmLIKELIHOODLEAST ANGLE REGRESSIONsparse modelsDifferential (infinitesimal)differential geometrylcsh:Statisticslcsh:HA1-4737computer.programming_languageMathematicsLeast-angle regressionExtension (predicate logic)Expression (computer science)generalized linear modelsBREAST-CANCER RISKVARIABLE SELECTIONDifferential geometrydifferential geometry generalized linear models dgLARS predictor-corrector algorithm cyclic coordinate descent algorithm sparse models variable selection.MARKERSHRINKAGEStatistics Probability and UncertaintyHAPLOTYPESSettore SECS-S/01 - StatisticacomputerAlgorithmSoftware
researchProduct

Understanding german fdi in latin america and asia: a comparison of glm estimators

2020

The growth of Foreign Direct Investment (FDI) in developing countries over the last decade has attracted an intense academic and policy-oriented interest for its determinants. Despite the gravity model being considered a useful tool to approximate bilateral FDI flows, the literature has seen a growing debate in relation to its econometric specification, so that which is the best estimator for the gravity equation is far from conclusive. This paper examines the determinants of German outward FDI in Latin America and Asia for the period 1996-2012 by evaluating the performance of alternative Generalized Linear Model (GLM) estimators. Our findings indicate that Negative Binomial Pseudo Maximum …

Generalized linear modelLatin Americansfdi determinantsEconomics Econometrics and Finance (miscellaneous)gravity modelsNegative binomial distributionDeveloping countryForeign direct investmentDevelopmentgermany:CIENCIAS ECONÓMICAS [UNESCO]German0502 economics and businessddc:330EconometricsEconomicsC13050207 economicsC33050208 financelcsh:HB71-7405 social sciencesEstimatorlcsh:Economics as a scienceUNESCO::CIENCIAS ECONÓMICASgeneralized linear modelslanguage.human_languageGravity model of tradelanguageF21F23outward foreign direct investment
researchProduct

Influence of environmental factors on the spatial distribution and diversity of forest soil in Latvia

2012

This study was carried out to determine the spatial relationships between environmental factors (Quaternary deposits, topographical situation, land cover, forest site types, tree species, soil texture) and soil groups, and their prefix qualifiers (according to the international Food and Agricultural Organization soil classification system World Reference Base for Soil Resources [FAO WRB]). The results show that it is possible to establish relationships between the distribution of environmental factors and soil groups by applying the generalized linear models in data statistical analysis, using the R 2.11.1 software for processing data from 113 sampling plots throughout the forest terri…

Soil mapRegosolforest typeSoil textureEcologylcsh:QE1-996.5Soil classificationLand coverlcsh:GeologyGeographySoil seriesgeneralized linear models.Unified Soil Classification SystemWorld Reference Base for Soil ResourcesGeneral Earth and Planetary SciencesPhysical geographyQuaternary depositsFAO WRB classificationWater Science and TechnologyEstonian Journal of Earth Sciences
researchProduct